Conformation-Reactivity Relationships for the Organotransition-Metal Complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}(\mathrm{R}=$ Alkyl and Aryl)

Jeffrey I. Seeman* ${ }^{* \dagger}$ and Stephen G. Davies*
Contribution from The Dyson Perrins Laboratory, University of Oxford, Oxford, OX1 3QY, U.K. Received December 11, 1984

Abstract

A conformational analysis is described for pseudooctahedral complexes of the type $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}(\mathbf{1})$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}(2)(\mathrm{R}=$ alkyl and aryl). The analysis is based upon extended Hückel calculations performed on the model iron complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{R}\left[\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\right.$, and Ph$]$ and rhenium complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPhH}_{2}\right) \mathrm{R}\left[\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, and $\left.\mathrm{CH}_{2}\left(2,6-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)\right]$. For R groups in 1 and 2 with a single C_{α} substituent (e.g., $\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{CH}_{2} \mathrm{Ph}$), the most preferred conformation places the C_{α} substituent between the cyclopentadienyl and the $\mathrm{CO}(\mathrm{NO})$ ligands. For R groups in 1 and 2 with two C_{α} substituents [e.g., $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], the most stable conformation has the two substituents straddling the cyclopentadienyl ligand. These most stable conformations correlate well with known X-ray crystal structures for $\mathbf{1}$ and $\mathbf{2}$. The conformational analysis elaborated herein is used to explain the high stereospecificities that have been observed in the reactions of $\mathbf{1}$ and $\mathbf{2}$.

I. Introduction

Organotransition-metal complexes form a class of very important molecules, not only because of their inherently interesting physical and chemical properties but also because of the significant impact they are having on synthetic organic chemistry. ${ }^{1-5}$ Many novel synthetic applications of organotransition-metal complexes have been reported in the recent literature which provide methods for synthetic transformations which are difficult or impossible to achieve by more conventional routes. Of crucial note is the observation that reactions at organic ligands bound to the ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ fragment are highly stereoselective. ${ }^{6-25}$ Similar observations have been noted in extensive studies on the corresponding $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}^{26-33}$ and other systems. ${ }^{15,18,30-34}$ Despite these advances, little has been reported concerning the detailed conformational analysis of such transi-tion-metal complexes and how this relates to the stereoselectivities of subsequent reactions. ${ }^{7.35}$

The primary focus of the study reported here is the development of a conformational model for organotransition-metal complexes of the type $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}$ (1) and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}$ $(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}$ (2) ($\mathrm{R}=$ alkyl, substituted alkyl, and aryl). The

$\stackrel{1}{\sim}$

${ }_{4}^{2}$
application of this conformational model to a rationalization of the chemical reactivity of complexes $\mathbf{1}$ and $\mathbf{2}$ is then described. Complexes of general type $\mathbf{1}$ and $\mathbf{2}$ are particularly suited to conformational analysis for several reasons; they are the most abundant general class of organotransition-metal complex for which a very large body of spectroscopic data and chemical reactivity information is available, a number of stereospecific reactions have been reported for several complexes of type $\mathbf{2}$, and no general theory has been advanced which correctly predicts all the stereochemical properties of these complexes. However, a generally accepted ${ }^{36}$ and frequently used but approximate conformational model ${ }^{37-42}$ for these systems has been in the literature for more than 10 years.

[^0]Our new conformational model for complexes of type 1 and 2 is based on consideration of their structural features and on

[^1](3) Wilkinson G.; Stone, F. G. A.; Abel, E. W. "Comprehensive Organometallic Chemistry"; Pergamon Press: Oxford, 1982.
(4) For a set of rules which allow the prediction of nucleophilic attack regiochemistry on 18 -electron organotransition-metal cations containing unsaturated ligands, see: Davies, S. G.; Green, M. L. H.; Mingos, D. M. P. Tetrahedron 1978, 34, 3047; Tetrahedron Rep. 1978, No. 57, 1.
(5) Colquhoun, H. M.; Holton, J.; Thompson, D. J.; Twigg, M. V. "New Pathways for Organic Synthesis"; Plenum Press: New York, 1984.
(6) Davies, S. G.; Dordor, I. M.; Walker, J. C.; Warner, P. Tetrahedron Lett. 1984, 2709.
(7) Davies, S. G.; Seeman, J. I. Tetrahedron Lett. 1984, 1845.
(8) Davies, S. G.; Dordor, I. M.; Warner, P. J. Chem. Soc., Chem. Commun. 1984, 956.
(9) Baird, G. J.; Davies, S. G.; Jones, R. H.; Prout, K.; Warner, P. J. Chem. Soc., Chem. Commun. 1984, 745.
(10) Curtis, P. J.; Davies, S. G. J. Chem. Soc., Chem. Commun. 1984. 747.
(11) Baird, G. J.; Bandy, J. A.; Davies, S. G.; Prout, K. J. Chem. Soc., Chem. Commun. 1983, 1202.
(12) Baird, G. J.; Davies S. G.; Maberly, T. R. Organometallics 1984, 3, 1764.
(13) (a) Liebeskind, L. S.; Welker, M. E.; Goedken, V. J. Am. Chem. Soc 1984, 106, 441. (b) Liebeskind, L. S.; Welker, M. E. Tetrahedron Lett. 1984. 4341.
(14) Brunner, H.; Hammer, B.; Bernal, I.; Draux, M. Organometallics 1983, 2, 1595.
(15) Brunner, H. Adv. Organomet. Chem. 1980, I8, 151.
(16) Flood, T. C.; Campbell, K. D. J. Am. Chem. Soc. 1984, 106. 2853.
(17) Jensen, J. E.; Campbell, L. L.; Nakanishi, S.; Flood, T. C. J. Organomet. Chem. 1983, 244, 61.
(18) Flood, T. C. Top. Stereochem. 1981, 12, 37.
(19) Brookhart, M.; Timmers, D.; Tucker, J. R.; Williams, G. D.; Husk, G. R.; Brunner, H.; Hammer, B. J. Am. Chem. Soc. 1983, 105, 6721.
(20) Brookhart, M.; Tucker, J. R.; Husk, G. R. J. Am. Chem. Soc. 1983, 105, 258.
(21) Bodnar, T.; Cutler, A. R. J. Organomet. Chem. 1981, 213. C31-C36.
(22) Davison, A.; Reger, D. L. J. Am. Chem. Soc. 1972, 94, 9237.
(23) Reger, D. L.; Belmore, K. A.; Mintz, E.; McElligott, P. J. Organometallics 1984, 3, 134.
(24) Reger, D. L.; Belmore, K. A.; Atwood, J. L.; Hunter, W. E. J. Am. Chem. Soc. 1983, 105, 5710.
(25) Reger, D. L.; McElligott, P. J.; Charles, N. G.; Griffith, E. A. H.: Amma, E. L. Ogranometallics 1982, 1, 443.
(26) Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. Organometallics 1984, 3, 879.
(27) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.: Constable, A. C.; Gladysz, J. A. Organometallics 1983, 2, 1852.
(28) Hatton, W. G.; Gladysz, J. A. J. Am. Chem. Soc. 1983. I05, 6157.

Table I. Pseudooctahedral Character of 1 and 2 as Determined by X-ray Crystallographic Analysis $\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$

iron complexes	bond angle, deg			
	P-Fe-C ${ }_{\alpha}$	$\mathrm{P}-\mathrm{Fe}-\mathrm{CO}$	$\mathrm{C}_{\alpha}-\mathrm{Fe}-\mathrm{CO}$	ref
$\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{O}$-menthyl	92.0	91.7	89.3	a
$\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{CO}_{2}$-menthyl	90.9	92.7	95.9	a
$(R R, S S)-\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\{\mathrm{COCH}(\mathrm{Me}) \mathrm{Et}\}$	89.3	92.1	94.8	b
$\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{C}_{6} \mathrm{H}_{5}$	88	87	88	c
$\mathrm{CpFe}\left(\mathrm{f}_{6} \mathrm{fos}\right)(\mathrm{CO}) \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}{ }^{\text {d }}$	97.1	96.1	83.5	e
$\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{COPh}$	88	86	93	f
$(S S)-\mathrm{Cp}^{\prime} \mathrm{Fe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{COCH}_{3}{ }^{\mathrm{g}}$	90.6	94.6	92.4	h
$(S R)-\mathrm{Cp}^{\prime} \mathrm{Fe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{I}^{8}$	94.3	91.2	91.7	h
$\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{SO}_{2}-i-\mathrm{Pr}$	93.0	95.8	92.3	i
$\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{CO}_{2}$-menthyl	89.9	91.7	90.9	j
$\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	91	92	92	k
$(Z)-\mathrm{CpFe}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{C}(\mathrm{OMe})=\mathrm{CHCH}_{3}$	92.0	91.7	93.7	l
		bond an		
rhenium complexes ${ }^{m}$	$\overline{\mathrm{P}-\mathrm{Re}-\mathrm{C}_{\alpha}}$	$\mathrm{P}-\mathrm{Re}-\mathrm{NO}$	$\mathrm{C}_{\alpha}-\mathrm{Re}-\mathrm{NO}$	ref
$\mathrm{CpRe}\left(\mathrm{PPh}_{3}\right)(\mathrm{NO}) \mathrm{CH}_{2} \mathrm{Ph}$	87.4	93.9	93.8	n
$\mathrm{CpRe}\left(\mathrm{PPh}_{3}\right)(\mathrm{NO})\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{O}\right)^{+}$		88.4	95.9	o
$\mathrm{CpRe}\left(\mathrm{PPh}_{3}\right)(\mathrm{NO})\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{S}\right)^{+}$		88.5	90.6	o
$\mathrm{CpRe}\left(\mathrm{PPh}_{3}\right)(\mathrm{NO})\left\{\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}\right\}$	93.6	90.0	90.6	p
$\mathrm{CpRe}\left(\mathrm{PPh}_{3}\right)(\mathrm{NO})(=\mathrm{CHPh})^{+}$	93.2	91.0	99.8	p
$\mathrm{CpRe}\left(\mathrm{PPh}_{3}\right)(\mathrm{NO}) \mathrm{CHO}$	85.0	92.8	92.7	q

${ }^{a}$ Reference 46. ${ }^{b}$ Reference 11. ${ }^{c}$ Reference 47. ${ }^{d} \mathrm{f}_{6}$ fos $=\left(1,2-\mathrm{PPh}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{~F}_{6}$. ${ }^{e}$ Reference 48 . ${ }^{f}$ Reference 49 . ${ }^{g} \mathrm{Cp}^{\prime}=1$-methyl-3-phenylcyclopentadienyl. ${ }^{h}$ Reference 50. ${ }^{i}$ Reference 51. ${ }^{j}$ Reference 52. ${ }^{k}$ Reference 53. ${ }^{\prime}$ Reference $9 .{ }^{m}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Re}\left(\mathrm{NO}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CH}_{2}\right)^{+}$is not included in this table due to disorder in the crystal. See ref $29, ~ " ~ R e f e r e n c e ~ 44, ~{ }^{\circ}$ Reference 54 , ${ }^{p}$ Reference 32 . ${ }^{q}$ Reference 55.
molecular orbital calculations of the extended Hückel type ${ }^{43}$ with parameters detailed in the Appendix section. Support for this model will be presented in terms of X-ray crystallographic results and ${ }^{1} \mathrm{H}$ NMR spectroscopic data. The ability of the model to evaluate the stereoselectivities observed will be described with particular attention being focused on aspects of chemical reactivities which were difficult to rationalize in terms of the previous model. A series of generalizations which describe the conformational properties of $\mathbf{1}$ and $\mathbf{2}$ and which predict reactivities and stereoselectivities of these complexes will be formulated.

II. Conformational Model for ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}$ (1) and ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathbf{R}$ (2)

Although complexes of type $\mathbf{1}$ and $\mathbf{2}$ are frequently described as pseudotetrahedral, ${ }^{13,15,19,41,44,45}$ both in discussions of these molecules and in their two-dimensional representations, an examination of available X-ray crystallographic data ${ }^{9,11,32,44-55}$ for
(29) Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. J. Am. Chem. Soc. 1983, $105,5804$.
(30) Merrifield, J. H.; Lin, G.-Y.; Kiel, W. A.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 5811.
(31) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 4958.
(32) Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4865 (33) Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, I04, 141.
(34) See, for example: Theopold, K. H.; Becker, P. N.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 5250.
(35) For a preliminary report of some of these results, see: Seeman, J. I.; Davies, S. G. J. Chem. Soc., Chem. Commun. 1984, 1019.
(36) This model appears frequently in the very recent edition of the Gmelin Handbook in the iron series: "Gmelin Handbook of Inorganic Chemistry" Springer-Verlag: Berlin, 1983: Vol. B11.
(37) Thomson, J.; Keeney, W.; Baird, M. C.; Reynolds, W. F. J. Organomet. Chem. 1972, 40, 205.
(38) Stanley, K.; Zelonka, R. A.; Thomson, J.; Fiess, P.; Baird, M. C. Can. J. Chem. 1974, 52, 1781.
(39) Stanley, K.; Baird, M. C. Inorg. Nucl. Chem. Lett. 1974, 10, 1111
(40) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1975, 97, 6598.
(41) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1975, 97, 4292.
(42) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1977, 99, 1808.
(43) For an examination and exploration of organotransition-metal complex structure and chemistry through the use of the extended Hückel procedure, see the numerous reports of the Hoffmann school at Cornell University, Ithaca, NY. For the early papers on this method, see: Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. Hoffmann, R.; Lipscomb, W. N. J. Chem. Phys. 1962, 36, 2179, 3489; 1962, 37, 2872.
(44) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics 1982, I, 1204.
(45) Flood, T. C.; Rosenberg, E.; Sarhangi, A. J. Am. Chem. Soc. 1977, 99, 4334.
complexes generalized by structures $\mathbf{1}$ and $\mathbf{2}$ clearly demonstrates that they are octahedral (Table I). ${ }^{7}$ While these comlexes are not perfectly symmetrical, the bond angle between any two of the directly bonded atoms of the ligands $\mathrm{R}, \mathrm{CO}(\mathrm{NO})$, and PPh_{3} and the metal is close to 90°. In addition, the bond angle between the centroid of the cyclopentadienyl ligand, the metal, and any other ligand is $\mathrm{ca} .125^{\circ}$. This structural feature is illustrated by the Newman projection 3 (looking from C_{α} of R to metal) which emphasizes the pseudooctahedral structure of complexes $\mathbf{1}$ and 2 and is the appropriate representation for the analysis which follows. Note that the bite angle between the $\mathrm{CO}(\mathrm{NO})$ ligand

\sim^{4}
and the PPh_{3} ligand is 90° while that between either of these ligands and the Cp group is 135°. In addition, when one considers the Newman projection 3, one must remember that the P, M, and $\mathrm{CO}(\mathrm{NO})$ atoms are in the same plane while the centroid of the Cp ligand is substantially behind the plane (c.f., 1-2). In contrast, the previous description of the structures for complexes 1 and 2 as pseudotetrahedral implies a 109.5° bond angle between any
(46) Chou, C.-K.; Miles, D. L.; Bau, R.; Flood, T. C. J. Am. Chem. Soc. 1978, $100,7271$.
(47) Semion, V. A.; Struchkov, Yu. T. J. Struct. Chem. (Engl. Transl.) 1969. $10,80$.
(48) Einstein, F. W. B.; Restivo, R. Inorg. Chim. Acta 1971, 5, 501.
(49) Semion, V. A.; Struchkov, Yu. T. J. Struct. Chem. (Engl. Transl.) 1969, 10, 563
(50) Attig, T. G.; Teller, R. G.; Wu, S.-M.; Bau, R.; Wojcicki, A. J. Am. Chem. Soc. 1979, 101, 619.
(51) Miles, S. L.; Miles, D. L.; Bau, R.; Flood, T. C. J. Am. Chem. Soc. 1978, $100,7278$.
(52) Reisner, M. G.; Bernal, I.; Brunner, H.; Muschiol, M. Inorg. Chem. 1978, 17, 783.
(53) Andrianov, V. G.; Sergeeva, G. N.; Struchkov, Yu. T.; Anisimov, K. N.; Kolobova, N. E.; Beshastnov, A. S. J. Struct. Chem. (Engl. Transl.) 1970, 1I, 163.
(54) Buhro, W. E.; Patton, A. T.; Strouse, C. E.; Gladysz, J. A.; McCormick, F. B.; Etter, M. C. J. Am. Chem. Soc. 1983, 105, 1056.
(55) Wong, W.-K.; Tam, W.; Strouse, C. E.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1979, 530.

Figure 1. Calculated potential energy (electronvolts) vs, torsional angle $\tau\left(\mathrm{H}_{\alpha}-\mathrm{C}_{\alpha}-\mathrm{Fe}-\mathrm{P}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{C}_{\alpha} \mathrm{H}_{3}$ (7).
two ligands and the metal atoms, as illustrated by 4.
A complete conformational analysis of complexes generalized by 3 is an unrealistic challenge given the size of the molecule and the many degrees of freedom available to it. Consequently, some simplifying assumptions have to be made. For the evaluation and prediction of the stereochemical consequences of reactions on the ligand R , the conformation of the groups attached to the α carbon of $\mathrm{R}\left(\mathrm{C}_{\alpha}\right)$ relative to the ligands around the metal is of most interest. The extended Hückel molecular orbital algorithm, a procedure well documented in the literature for these types of organotransition-metal complexes, ${ }^{43,56-62}$ was employed for the conformational analysis of complexes 1 and 2. Both electronic and steric effects on rotational energy profiles in organo-transition-metal complexes related to $\mathbf{1}$ and $\mathbf{2}$ have been recently published by Hoffmann et al. ${ }^{58-61}$ For calculations of this nature, it has been standard practice to examine the structure-energy relationships by using abridged analogues of 1 and 2 , i.e., where the PPh_{3} ligand has been replaced by $\mathrm{PH}_{3} \cdot{ }^{32,58}$ This approach simplifies the calculations and reduces the required computer time since the inclusion of three phenyl rings considerably adds to the computational complexity. In our preliminary studies, we also made this simplifying assumption but rapidly concluded that PPh_{3} was not well modeled by PH_{3} for these complexes. Examination of all available X-ray structural data for complexes of this type shows that one phenyl group consistently lies close under the ligand R in a plane approximately parallel to the plane formed by Fe (or Re), C_{α}, and CO (or NO), and chemical evidence shows that the P -phenyl rings exert a considerable influence of the properties of $\mathrm{R} .{ }^{6-13}$ We turned our attention therefore to the analogous complexes 5 where one phenyl substituent on the phosphorus was retained, i.e., PPh_{3} was modeled with PPhH_{2}. Furthermore, in

order to treat the possible interactions between the R substituent and the PPh_{3} ligand in 1 , we restricted rotation about the metal phosphorus bond such that the metal- C_{α} bond essentially eclipsed the $\mathrm{P}-\mathrm{C}_{\mathrm{ipso}}$ bond as shown in 6.

[^2]To characterize the nature of the potential energy function for rotation about the metal- C_{α} bond, extended Hückel calculations were performed on the series of compounds 7-15.

13 $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$
$14 \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
$15 R=\mathrm{CH}_{2}\left(2,6-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)$

As the starting point in all the calculations, available X-ray crystallographic data for the required structural parameters (bond lengths, bond angles, and torsional angles) were used for which the leading references can be found in Table I. It was further assumed that the two ortho carbons of the phenyl ring were essentially equidistant from the plane containing the $\mathrm{CO}(\mathrm{NO})$, $\mathrm{Fe}(\mathrm{Re})$, and C_{α} of the R substituent, as illustrated in 6 . Furthermore, since the iron system is of particular interest to us, most of the calculations were performed on iron rather than on the rhenium complexes.

In the figures which follow, the abscissa refers to the torsional angle $\tau \equiv \tau\left(\mathrm{X}-\mathrm{C}_{\alpha}-\mathrm{M}-\mathrm{P}\right)$ where X is the specified C_{α} substituent. A positive value refers to a clockwise rotation of X from the eclipsed position, as indicated in the Newman projection 16. In

each case, the ordinate gives the potential energy in the electronvolts ($1 \mathrm{eV}=23 \mathrm{kcal}$).
A. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathbf{C O})\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}_{3}$ (7). The variation of potential energy for rotation of the methyl group about the $\mathrm{C}_{\alpha}-\mathrm{Fe}$ bond for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}_{3}(7)$ is shown in Figure 1. The energy minima for rotation of the symmetrical methyl group (3-fold barrier to rotation) are at ca. $\tau=65^{\circ}, 185^{\circ}$, and 305°. In these equivalent conformations, one hydrogen is essentially antiperiplanar to the $\mathrm{Fe}-\mathrm{P}$ bond, i.e., between the cyclopentadienyl and the CO ligands, a second hydrogen is between CO and PPhH_{2} ligands but closer to the CO ligand, and the third hydrogen atom is between the cyclopentadienyl and the PPhH_{2} ligands. The energy maxima are found where one hydrogen eclipses the $\mathrm{Fe}-\mathrm{P}$ bond. The calculated barrier for 7 (ca. 0.25 $\mathrm{eV} ; 6 \mathrm{kcal} / \mathrm{mol})$ is in line with previous studies $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \cdot \mathrm{Fe}-\right.$ $(\mathrm{CO})_{2} \mathrm{CH}_{3}: 5.4 \mathrm{kcal} / \mathrm{mol}$ (experimental); ${ }^{63} 2.9 \mathrm{kcal} / \mathrm{mol}$ (theoretical) ${ }^{58}$].

No effort has been made to optimize geometry although this would undoubtedly lower this calculated barrier. Nevertheless, as in previous studies, the trends obtained should be clear indications of preferred conformations.

From these results, a major difference between a tetrahedral geometry about the metal (old model) ${ }^{36-42}$ and a pseudooctahedral geometry (this work) is apparent. For the pseudooctahedral geometry, it is impossible to perfectly stagger or eclipse simultaneously all three methyl hydrogens with the other three metal
(63) Value quoted in ref 58 and attributed to J. W. Norton.

Figure 2. Calculated potential energy (electronvolts) vs. torsional angle $\tau\left(\mathrm{C}_{\beta}-\mathrm{C}_{\alpha}-\mathrm{Fe}-\mathrm{P}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{C}_{\alpha} \mathrm{H}_{2} \mathrm{CH}_{3}(8)$ (solid line) and $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPhH}_{2}\right) \mathrm{C}_{\alpha} \mathrm{H}_{2} \mathrm{C}_{\beta} \mathrm{H}_{3}$ (13) (dashed line).
ligands. The results in Figure 1 also indicate that the PPhH_{2} ligand is the largest ligand on iron and that orientation of any substituent on C_{α} toward this ligand will be destabilizing.

As indicated previously, a wide variety of X-ray crystallographic results indicate that complexes of type 7 are pseudooctahedral. ${ }^{7}$ To determine whether the extended Hückel algorithm was capable of reproducing this experimental observation, the relationship between the PE function and two variables, namely the iron-tomethyl carbon distance and the angle between any two of the ligands $\mathrm{CO}, \mathrm{PPhH}_{2}$, or CH_{3} and the metal for the symmetrical complex 7 was investigated. A PE minimum is found at $d_{\mathrm{Fe}-\mathrm{CH}_{3}}$ $\cong 2.15 \AA$ and for bond angles of 94.5°. The former value correlates well with measured $\mathrm{Fe}-\mathrm{C}_{\alpha}$ bond lengths, and the bond angle of 94.5° is consistent with pseudooctahedral (90°) but not pseudotetrahedral (109.5°) geometry.
B. $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}(8)$ and $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}-$ (NO) $\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ (13). The potential energy curve for rotation of the ethyl group about the $\mathrm{Fe}-\mathrm{C}_{\alpha}$ bond in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}(8)$ is shown in Figure 2. The most stable conformation 8a is at $\tau \cong 195^{\circ}$ where the methyl group is located between the two smallest ligands on iron, the cyclopentadienyl, and the CO. In this and most of the figures which follow, the portions of the energy curve relating to the energy maxima are not drawn. These regions have been omitted because complete energy minimization, which has not been performed, undoutedly would decrease substantially the energy at these torsional angles. The positions of the energy minima and the lowest barriers between them are of primary interest in this study. We have, in many cases, however, iteratively examined the effect of varying a number of structural parameters on the total energy and find only slight to moderate variations in the regions of the energy minima but substantial energy variations in the regions of the energy maxima.

Two other, less stable, conformations, $\mathbf{8 b}$ and $\mathbf{8 c}$, are also apparent. Conformation 8b occurs at $\tau \cong 295^{\circ}$ and corresponds to the conformation in which the methyl group has just passed the CO ligand, approaching the PPhH_{2} ligand. Conformation 8 c has the methyl group between the cyclopentadienyl and the
$\mathrm{PPh} \mathrm{H}_{2}$ ligands at $\tau \cong 90^{\circ}$, i.e., closer to the cyclopentadienyl than to the PPhH_{2}. Both of the latter two energy wells are clearly unsymmetrical as rotation of the methyl group toward the PPhH_{2} ligand between $\tau \cong \pm 80^{\circ}$ causes a very significant destabilization and is indicative of the powerful steric hindrance resulting when any α substituent (in this case, CH_{3}) comes in close proximity to the phenyl ring of the PPhH_{2} ligand. Although not included in Figure 2, the PE maximum was found at ca. $\tau=0^{\circ}$.

Gradually distorting the molecule 8 by increasing the bond angles $\angle \mathrm{PFeC}{ }_{\alpha}, \angle \mathrm{PFe}(\mathrm{CO})$, and $\angle \mathrm{C}_{\alpha} \mathrm{Fe}(\mathrm{CO})$ from $90^{\circ} \rightarrow 99^{\circ}$ gave calculated PE curves of essentially the same form with conformations $8 a$ and $8 c$ remaining unchanged in energy but with conformation $\mathbf{8 b}$ becoming relatively more stabilized.

Although it is known from X-ray crystallographic studies that the three phenyl rings in complexes $\mathbf{1}$ and $\mathbf{2}$ are splayed in a distorted propeller fashion with the phenyl ring below the R substituent being approximately coplanar with the plane containing CO, Fe, and C_{α} but tilted slightly away from $\mathrm{R},{ }^{64}$ the above calculations assume that the ortho (and meta) pair of carbon atoms are equidistant from this plane. In order to evaluate this assumption, the phenyl ring in 8 was rotated about the $\mathrm{P}-\mathrm{C}_{i \text { ipo }}$ bond by $\pm 20^{\circ}$ and $\pm 40^{\circ}$ and the conformational PE curve for rotation about $\mathrm{Fe}-\mathrm{C}_{\alpha}$ recalculated. In all cases examined, rotation about $\mathrm{P}-\mathrm{C}_{\text {ipso }}$ led to overall destabilization but the general features of the PE curve remained essentially unchanged. Overall, these calculations demonstrate that the initial assumption is valid.

Similar calculations were performed on the analogous rhenium complex ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Re}(\mathrm{NO})\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}(13)$, the results of which are also shown in Figure 2. The conformation PE curve is essentially the same for the iron complexes, with the slight difference that for the iron complex the minima are defined better. This may reflect the relatively shorter metal- C_{α} bond length for the iron complexes. In a manner analogous to that performed on the methyl complex 7, the pseudooctahedral character of the iron ethyl complex 8 was investigated. An energy minimum at $d_{\mathrm{Fe}-\mathrm{C}_{\alpha}} \cong 2.20 \AA$ and bond angles $\cong 92.0^{\circ}$ was found.
C. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathbf{P P h H}_{2}\right)\left(\mathbf{C H}_{2} \mathbf{P h}\right)(14)$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathbf{R e}(\mathbf{N O})\left(\mathbf{P P h H}_{2}\right)\left[\mathbf{C H}_{2}\left(\mathbf{2 , 6}-\mathbf{C}_{6} \mathbf{H}_{3} \mathbf{M e} 2\right)\right]$ (15). The conformational analysis for the benzyl complex 14 is based on X-ray crystal structures reported by Gladysz et al. for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{Ph}(17)$ and $\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}$ (18). ${ }^{32,44}$ Figure 3 shows the PE curve for rotation about the $\mathrm{Re}-\mathrm{C}_{\alpha}$ bond for 14 and 15 with the orientation of the plane of the benzyl phenyl fixed perpendicular to the planes containing the atoms $\mathrm{C}_{\mathrm{ips} 0}, \mathrm{C}_{\alpha}$, and Re. One predominant minimum at $\tau \cong$ 205° is observed which corresponds to a conformation in which the benzyl phenyl is approximately halfway between the cyclopentadienyl and NO ligands (14a). This corresponds excellently with the observed X-ray structural results where $\tau=203^{\circ} .44 \mathrm{~A}$ second minimum, essentially a shoulder, is also found at $\tau=$ $115^{\circ}-135^{\circ}$. Any conformation between $\tau= \pm 110^{\circ}$ is energetically highly unfavorable due to steric interactions between the benzyl phenyl group and the P-phenyl group(s).

The validity of restricting the orientation of the plane of the benzyl phenyl ring as described above was examined for several τ values (i.e., at fixed τ values, the PE function for rotation of the benzyl phenyl about the $\mathrm{C}_{\text {ipso }}^{\prime}-\mathrm{C}_{\alpha}$ bond was calculated). At the minimum ($\tau=205^{\circ}$), the plane of the benzyl phenyl ring does indeed prefer to be approximately perpendicular to the plane containing $\mathrm{C}^{\prime}{ }_{i p s o}, \mathrm{C}_{\alpha}$, and Re . This is fully consistent with the X-ray crystallographic findings and observations of Gladysz where the angle between these planes is $84.5^{\circ}{ }^{32.44}$ The above orientation of the phenyl ring is however obviously not the most favorable for all τ values. Detailed calculations reveal that among other possible distortions (c.f. above), rotational motion about the $\mathrm{Re}-\mathrm{C}_{\alpha}$ bond will be coupled to rotation about the $\mathrm{C}_{\alpha}-\mathrm{C}_{\text {ipso }}$ bond. This is however only important when the two phenyl groups (i.e., the benzyl phenyl and the $\mathrm{P}-\mathrm{Ph}$) are close together. At the extremes $\mathbf{1 4 c}$ and 14d, the calculated PE minima are where the two phenyl
(64) We have made this observation following detailed examination of numerous X-ray crystallographic structures.

Figure 3. Calculated potential energy (electronvolts) vs. torsional angle $\tau\left(\mathrm{C}_{\mathrm{ipsos}}-\mathrm{C}_{\alpha}-\mathrm{Fe}-\mathrm{P}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}_{2} \mathrm{Ph}(14)$ (solid line) and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPhH}_{2}\right) \mathrm{C}_{\alpha} \mathrm{H}_{2}\left(2,6-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)$ (15) (dashed line). In both calculations, the plane of the benzyl phenyl was kept essentially perpendicular to the plane containing $\mathrm{C}_{\mathrm{ips}}, \mathrm{Re}$, and C_{α} (see text for discussion).
rings are essentially coplanar for $\mathbf{1 4 c}$ and twisted 60° for 14 d . Conformations 14 c and $\mathbf{1 4 d}$ are however still less stable than 14a.

The extended Hückel algorithm again predicted the pseudooctahedral character of this complex, giving an average value of 93° for the angles between the Re atom and any two of the atoms N, P, or C_{α} (experimental value 91.7°).

The crucial difference between the ethyl complexes 8 and 13 and the benzyl complexes 14 is that the conformation that would place the C_{α} substituent between the CO and PPhH_{2} ligands is energetically extremely unfavorable for the larger phenyl group in 14 (Figure 3) although it corresponds to a PE well for the smaller methyl group (8b) in $\mathbf{8}$ and 13 (see Figure 2). Distortion of the molecule 14 away from pseudooctahedral geometry, as described above for the ethyl complex 8, only broadened somewhat the overall energy well for 14, but no new minima (e.g., one that would correspond to $\mathbf{8 b}$ in Figure 2) were apparent.

Because it plays an important role in the varied chemistry of these complexes, the more substituted $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ -$\left(\mathrm{PPh}_{3}\right)\left[\mathrm{CH}_{2}\left(2,4,6-\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right]^{26}\right.$ was examined by using the

Figure 4. Calculated potential energy (electronvolts) vs. torsional angle $\tau\left(\mathrm{H}_{\alpha}-\mathrm{C}_{\alpha}-\mathrm{Fe}-\mathrm{P}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{C}_{\alpha} \mathrm{H}_{\alpha}\left(\mathrm{CH}_{3}\right)_{2}$ (9). The dashed curve illustrates the expanded scale indicated on the ordinate.
model $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPhH}_{2}\right)\left[\mathrm{CH}_{2}\left(2,6-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}\right]\right.$ 15. In a manner analogous to that performed on the benzyl complex 14, a wide variety of orientations and tilts of the dimethylphenyl group were examined by using the extended Hückel algorithm. By far, the most stable conformations available to this species position the substituted phenyl ring between the cyclopentadienyl and NO ligands, with the plane of the ring perpendicular to the plane containing $\mathrm{Re}, \mathrm{C}_{\mathrm{ipso}}$, and C_{α}. As shown in Figure 3 (dotted line), only a very restricted region of the potential torsional motion is available for 15. Rotation either about the $\mathrm{Re}-\mathrm{C}_{\alpha}$ bond or about the $\mathrm{C}_{\alpha}-\mathrm{C}_{\text {ipso }}$ bond brings at least one methyl substituent into close proximity with either the P -phenyl group, the NO ligand, or the cyclopentadienyl ligand.
D. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ (9). Figure 4 illustrates the conformational PE curve for rotation about the $\mathrm{Fe}-\mathrm{C}_{\alpha}$ bond in the isopropyl complex 9 . The preferred conformation $9 \mathbf{a}$ has two methyl groups straddling the cyclopentadienyl. A second less-stable conformation $9 \mathbf{b}$ is also suggested. These conformations correlate well with those found for the ethyl complex 8 (Figure 2). Once again, any rotation that places a methyl group close to the phenyl ring is significantly destabilizing. There is also a third metastable minimum 9c at a much higher energy where the two methyl groups straddle the Fe-P bond. This is obviously highly unstable with both methyl groups close to the phenyl but rotation in either direction will introduce even more severe interactions (see below).
Although the isopropyl iron complex ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Fe}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and the analogous rhenium complex ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}(19)$ are known, their X-ray crystallographic analyses have not been reported. Such a study has been performed, however, on the structurally related rhenium complex 18.32 The observed conformation for 18 matches very closely that calculated as being most stable (9a) for the iron isopropyl complex 9 .
E. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{1 0})$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}$ (11). Figure 5 (solid line) illustrates the conformational PE curve for rotation about the $\mathrm{Fe}-\mathrm{C}_{\alpha}$ bond for the tert-butyl complex 10. The energy minima occur when two of the methyl groups straddle the $\mathrm{Fe}-\mathrm{P}$ bond and are analogous to the metastable minimum 9c described above for the isopropyl complex 9 (Figure 4). The unavoidable severe inter-

18

$$
0=-35 \cdot 6^{\circ}(x-\text { ray })^{32}
$$

90

$$
0=-35^{\circ} \text { (calculated) }
$$

actions between the tert-butyl and phenyl groups makes some optimization of structural parameters desirable in this case. When a symmetrical arrangement is maintained at the metal center, increasing the bond angles between the iron atom and any two of the ligands CO, P, or C_{α} initially decreases the total energy of the complex as does increasing the $\mathrm{Fe}-\mathrm{C}_{\alpha}$ bond length from $2.15 \AA$, the most stable arrangement for the optimum conformation being found at $d_{\mathrm{Fe}-\mathrm{C}_{\alpha}} \cong 2.20 \AA$ with the above angles being 99.8°.

Although the tert-butyl complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{C}$ $\left(\mathrm{CH}_{3}\right)_{3}$ is unknown, X-ray crystallographic data have been obtained for the related trimethyltin complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})$ -(1,2-($\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{~F}_{6}\right) \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{2 0}) .^{48}$ The PE curve calculated for the model $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}$ complex 11 is also shown in Figure 5 (dashed line) and correlates extremely well with the tert-butyl derivative 10. The same geometry optimization for $\mathbf{1 1}$ as described above for 10 gave a minimum energy geometry for the preferred conformation at $d_{\mathrm{Fe}-\mathrm{Sn}}=2.65 \AA$ for a $\mathrm{P}-\mathrm{Fe}-\mathrm{Sn}$ angle of 99.75°. These values compare favorably with the experimentally determined values for 20 of $2.57 \AA$ and 97.1°, respectively. ${ }^{48}$ In addition, the experimentally observed torsional angle $\tau(\mathrm{C}-\mathrm{Sn}-$ $\mathrm{Fe}-\mathrm{P})=-47.2^{\circ}{ }^{48}$ is consistent with the calculated value of -55°.
F. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{Ph}$ (12). The final complex examined in this study is the phenyl compound 12. The PE function for rotation about the $\mathrm{Fe}-\mathrm{C}_{\alpha}$ bond is shown in Figure 6. The rather broad energy well corresponds to the two phenyl rings being approximately parallel, consistent with the X-ray crystallographic data reported for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{Ph} .{ }^{47}$ The PE maximum occurs when the planes of the two phenyl groups are perpendicular to each other.

III. Structural and Conformational Generalizations for Complexes 1 and 2

The extended Hückel calculations described above for complexes 7-15 and X-ray crystal structural data allow a number of structural and conformational generalizations to be made concerning complexes of types $\mathbf{1}$ and 2.
(1) For R groups with at least one C_{α} hydrogen, the energetically accessible conformations all prefer a pseudooctahedral geometry at the metal center, that is, with the three bonds M$\mathrm{PPh}_{3}, \mathrm{M}-\mathrm{CO}(\mathrm{NO})$, and $\mathrm{M}-\mathrm{R}$ approximately mutually perpendicular and all subtending an angle of approximately 125° with the metal-cyclopentadienyl centroid line. Available X-ray crystallographic data are consistent with this generalization and are given in Table I. For complexes with no α-hydrogen, e.g., 1 and 2 where $\mathrm{R}=t$ - Bu or SnMe_{3}, all conformations with a pseudooctahedral metal geometry are energetically unfavorable and severe geometric distortions occur.
(2) One phenyl group of the PPh_{3} ligand lies in a plane close to (3-4 \AA) and roughly parallel to the plane containing the metal, $\mathrm{CO}(\mathrm{NO})$ and $\mathrm{C}_{\alpha}{ }^{7}{ }^{7}$ Consequently, no C_{α} substituent can dip more than ca. 10° below the plane containing the metal, $\mathrm{CO}(\mathrm{NO})$, and C_{α} without severe distortion of the overall structure. The energetically unfavorable zone for C_{α} substituents is indicated in 21.

$\stackrel{22}{\sim}$

Figure 5. Calculated potential energy (electronvolts) vs. torsional angle $\tau\left(\mathrm{C}_{\beta}-\right.$ atom $\left._{\alpha}-\mathrm{Fe}-\mathrm{P}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{C}_{\alpha}\left(\mathrm{C}_{\beta} \mathrm{H}_{3}\right)_{3}(10)$ (solid line) and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPhH}_{2}\right) \mathrm{Sn}_{\alpha}\left(\mathrm{C}_{\beta} \mathrm{H}_{3}\right)_{3}$ (11) (dashed line).

Table II. Three-Bond Proton-Phosphorus Coupling Constants for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime}$

complex	${ }^{3} J_{\mathrm{PH}_{5}}$	${ }^{3} J_{\mathrm{PH}_{\mathrm{R}}}$	ref
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime}$			
$\mathrm{R}^{\prime}=\mathrm{Me}$	12	2	a, b
$\mathrm{R}^{\prime}=\mathrm{SiMe}$	14	2	a, c
$\mathrm{R}^{\prime}=\mathrm{SiMe}_{2} \mathrm{Ph}$	13	2	a, d
$\mathrm{R}^{\prime}=\mathrm{Ph}$	10.6	4.1	a
$\mathrm{R}^{\prime}=\mathrm{SO}_{2} \mathrm{O}(l$-menthyl $)$	11	1	a
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime}$			
$\mathrm{R}^{\prime}=\mathrm{Ph}^{2}$	8.0	3.0	f
$\mathrm{R}^{\prime}=2,4,6-\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$	1.5	8.9	g
$\mathrm{R}^{\prime}=\mathrm{Bu}^{\prime}$	12.8	0	h

${ }^{a}$ For a summary of data from different primary sources, see ref 36, Table 18, pp 177-185. ${ }^{b}$ Reference 22. ${ }^{c}$ References 39 and 41. ${ }^{d}$ Pannell, K. H. Transition Met. Chem. (Weinheim Ger.) 1975/1976, I, 36. ${ }^{e}$ Flood, T. C.; DiSanti, F. J.; Miles, D. L. Inorg. Chem. 1976, 15, 1910. ${ }^{f}$ References 32 and 44, ${ }^{8}$ Reference 26. ${ }^{h}$ Reference 31.
(3) For R groups with a single C_{α} substituent (e.g., $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{Ph}$), the most preferred conformation places the C_{α} substituent between the cyclopentadienyl and $\operatorname{CO}(\mathrm{NO})$ ligands 22. For sterically undemanding C_{α} substituents (e.g., Me), less stable but accessible conformations with the C_{α} substituent between the PPh_{3} and the cyclopentadienyl or the $\mathrm{CO}(\mathrm{NO})$ ligands also exist. The latter appears however to be highly unfavorable for larger C_{α} substituents (e.g., phenyl). For extremely large C_{α} substituents (CMe_{3} and SnMe_{3}), the distinctly lowest energy conformation is 22. In order to facilitate the calculations, it was assumed that the $\mathrm{Fe}-\mathrm{C}_{\alpha}$ and the $\mathrm{P}-\mathrm{C}_{\text {ipso }}$ bonds were eclipsed and that the two ortho carbons of the shielding phenyl group were

Chart I. Comparison of Conformational Stabilities Deduced from the Previous and Current Models for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime} 66$

Figure 6. Calculated potential energy (electronvolts) vs. torsional angle $\tau\left(\mathrm{C}_{\text {ortho }}-\mathrm{C}_{\mathrm{ipso}}-\mathrm{Fe}-\mathrm{P}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{2}\right) \mathrm{Ph}(12)$.
essentially equidistant from the plane containing $\mathrm{M}, \mathrm{C}_{\alpha}$, and $\mathrm{CO}(\mathrm{NO})$. From the available X-ray data, however, it is evident that for both the iron and rhenium complexes, the $\mathrm{P}-\mathrm{C}_{\text {ipso }}$ bond is orientated somewhat toward the $\mathrm{M}-\mathrm{CO}(\mathrm{NO})$ bond and mor-
eoever is tilted to bring the ortho carbon nearest to $\mathrm{CO}(\mathrm{NO})$ closer to the $\mathrm{M}-\mathrm{C}_{\alpha}-\mathrm{CO}(\mathrm{NO})$ plane, i.e., 23. ${ }^{65}$ Both these phenomena

$\stackrel{23}{\sim}$
will have the effect of destabilizing, still further, conformations with C_{α} substituents between CO and PPh_{3} but relatively stabilizing conformations with C_{α} substituents between cyclopentadienyl and PPh_{3}.
(4) For R groups with two C_{α} substituents [e.g., $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], the stable conformation has the two substituents straddling the cyclopentadienyl ligand, e.g., 24 with only the C_{α} hydrogen being below the plane containing the metal, $\mathrm{CO}(\mathrm{NO})$, and C_{α}.

IV. Discussion

An earlier conformational analysis for ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Fe}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime}$ proposed by Baird et al. was based on a tetrahedral model with the size of $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}>\mathrm{PPh}_{3}>\mathrm{CO}$ and resulted in the conclusion that the conformer stabilities (populations) were A > $\mathrm{B}>\mathrm{C}$ (Chart I) ${ }^{37-42}$ This model was later extended and adapted by Gladysz et al., with $\mathrm{PPh}_{3}>\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$, to the corresponding pseudooctahedral rhenium complexes 26 with the conclusion that the conformer stabilities were $\mathrm{A} \cong \mathrm{B}>\mathrm{C}$ (Chart I). ${ }^{26,31,32}$ Chart I compares the stable conformations from the earlier models with those described here. Of paramount importance is the fact that the postulated "most stable" conformation A in the previous studies is highly disfavored in the present one for all but very small R^{\prime} groups (e.g., H and Me). The present analysis indicates that the
(65) We have examined this structural feature for a number of complexes, including $\mathrm{CpRe}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)=\mathrm{CHPh}^{+}{ }^{32} \mathrm{CpRe}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{Ph}^{2}\right) \mathrm{Ph},{ }^{32}$ $\left.\mathrm{CpRe}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2} \mathrm{C}=\mathrm{S}\right),{ }^{54} \mathrm{CpRe}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CHO}\right)^{55} \mathrm{CpFe}(\mathrm{CO})-$ $\left(\mathrm{PPh}_{3}\right)\{\mathrm{COCH}(\mathrm{Me}) \mathrm{Et}\}$, and $(Z)-\mathrm{CpFe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{C}(\mathrm{OMe})=\mathrm{CHCH}_{3} .{ }^{9}$

Table III. Parameters Used in Extended Hückel Calculations ${ }^{2}$

orbital	$H_{i j}, \mathrm{eV}$	ζ_{1}	ζ_{2}	$C_{1}{ }^{{ }^{b}}$	$C_{2}{ }^{{ }^{b}}$
Fe 3d	-12.7	5.35	1.80	0.5366	0.6678
Fe 4s	-9.17	1.90			
Fe 4p	-5.35	1.90			
C 2s	-21.40	1.625			
C 2p	-11.40	1.625			
H 1s	-13.6	1.30			
P 3s	-18.6	1.66			
P 3p	-14.0	1.60			
Sn 5s	-13.04	2.129			
Sn 5p	-6.76	1.674			
$\operatorname{Re} 5 d$	-12.66	5.343	2.277	0.6359	0.5677
$\operatorname{Re} 6 \mathrm{~s}$	-9.36	2.398			
$\operatorname{Re~6p}$	-5.96	2.372			
O 2s	-32.3	2.275			
O 2p	-14.8	2.275			
N 2 s	-26.0	1.950			
N 2p	-13.40	1.950			

${ }^{a}$ Parameters taken from ref 32 and $58-62 .{ }^{b}$ Contraction coefficients used in the double- ζ expansion.
interaction of the R group with the PPh_{3} ligand can be much greater than with the cyclopentadienyl ligand. This is reasonable since the PPh_{3} is restricted to one of the octahedral sites whereas the cyclopentadienyl is spread over three sites. Thus, the orientation of the R substituent is controlled by the PPh_{3} ligand- R interaction.

Interpretations of some very elegant ${ }^{1} \mathrm{H} \mathrm{NMR}^{37-42}$ and stereochemical studies ${ }^{26.31}$ have relied on the high-energy conformation A and merit reexamination. The ${ }^{3} J_{\mathrm{PH}}$ coupling constants between phosphorus and the diastereotopic α-hydrogens for several complexes of the types 25 and 26 have been found to be tem-perature-dependent, and this has been explained in terms of an equilibrium between stable conformers. ${ }^{26,31,41}$ This may be reasonable when R^{\prime} in $\mathbf{2 5}$ and $\mathbf{2 6}$ is small (e.g., CH_{3}) but not when R^{\prime} is large (e.g., $\mathrm{Ph} t-\mathrm{Bu}$, and SiMe_{3}). The present model would predict that in general at low temperatures, R^{\prime} groups in $\mathbf{2 5}$ and 26 would adopt conformation B and therefore, from application to the Karplus equation $J_{\mathrm{PH}_{\mathrm{R}}}$, would be close to zero whereas $J_{\mathrm{PH}_{\mathrm{s}}}$ would be large. High temperatures will alter the conformer populations within the same potential energy well and increased population of conformation D, for example, where $J_{\mathrm{PH}_{\mathrm{R}}}$ would be large but $J_{\mathrm{PH}_{\mathrm{S}}}$ small, would also account for the observed J_{PH} temperature dependence. Furthermore the above analysis allows assignment of the chemical shifts of the α-protons from $\mathbf{2 5}$ and 26 (Table II).

$\stackrel{B}{\sim}$
\rightleftharpoons
$25(26) \mathrm{Fe}(\mathrm{Re})$
D

It is important to note that in the complex 26 where $\mathrm{R}^{\prime}=$ mesityl, the present model (Figure 3) would predict that the equilibrium $\mathrm{B} \rightleftarrows \mathrm{D}$ would favor conformer D and, hence, consistent with experimental observations, ${ }^{26}$ the assignment of the chemical shifts and coupling constants for the α-hydrogens is reversed in this case (Table II).

Hydride abstractions by the trityl cation from the rhenium complexes 26 ($\mathrm{R}^{\prime}=$ aryl) exhibit stereoselectivities which vary with the aryl substituent. ${ }^{26,32}$ Consistent with the current conformational analysis, the trityl cation could approach an α-hydrogen only between the cyclopentadienyl and either the PPh_{3} or the NO ligands, although due to its large bulk it would much prefer the latter less-encumbered trajectory. It would prefer therefore to abstract $\mathrm{H}_{S^{-}}$from conformation 17C (26C). For all but the largest R^{\prime} groups (e.g., Me or Ph), not only will both conformations B and C be populated but the energy barrier to
interconversion will be relatively small and their interconversion rate therefore fast. Consequently, the trityl cation is able to abstract $H_{S}{ }^{-}$. For very large R^{\prime} groups (e.g., mesityl), only conformations in which R^{\prime} lies between the cyclpentadienyl and $\mathrm{CO}(\mathrm{NO})$ will be populated; therefore the trityl cation can only abstract $\mathrm{H}_{\mathrm{R}}{ }^{-}$(cf. 27). The reported stereoselectivities for $\mathrm{H}_{S^{-}}$over $\mathrm{H}_{\mathrm{R}}{ }^{-}$removal are 99:1, 50:50, and 1:99 for 26 with $\mathrm{R}^{\prime}=$ phenyl 17, 2-methylphenyl, and mesityl 27, respectively. These results

are entirely consistent with the above analysis and the CurtinHammett principle. ${ }^{67}$ Furthermore α-hydride abstraction from complexes 17 and 27 produces the synclinal 28 and anticlinal 29 carbene cations, respectively. ${ }^{26,31,32}$

The rhenium ethyl complex 30^{31} behaves in an identical manner with the benzyl complex 17 in that it undergoes exclusive α-hydride abstraction to give only the synclinal complex 31, consistent with trityl cation abstracting hydride from conformation 30C. For

complex 30, conformation 30A is also available but it is unreactive toward trityl cation presumably because hydride removal would
(66) A pairwise comparison of the postulated stable conformations of the model proposed herein (Chart I, line 3) a nd the conformations of the generally accepted model of Baird proposed many years ago (Chart I, line 1) is rendered difficult because our model is based on the pseudooctahedral nature about the metal while the literature model is based on a pseudotetrahedral-metal geometry. For molecules generalized by $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}$, the literature model ${ }^{37-42}$ asserts three energy minima symmetrically located 120° apart; our alternative model suggests three minima, ca. 90° apart (and 180° apart at the extremes) when R is small in size, two minima ca. 100° (and 260°) apart for moderately sized R, and one minimum for very bulky R. (Of course, other local but significantly destabilized minima are possible on the conformational PE surface.) A pairwise comparison of the PE curves for the literature model vs. the current model is further complicated by the necessity of arbitrarily referencing one curve to the other. In our preliminary paper, we displayed such a comparison, with the two curves referenced to initial eclipsing of the cyclopentadienyl ligand with a R group at $\tau\left(\mathrm{R}-\mathrm{C}_{\alpha}-\mathrm{M}-\mathrm{Cp}\right)$ $=0^{\circ}$. Alternative arbitrary references could have been chosen, e.g., $\tau(\mathrm{R}-$ $\left.\mathrm{C}_{\alpha}-\mathrm{M}-\mathrm{P}\right)=0^{\circ}$, thereby leading to a different overlapping of the literature PE curve ${ }^{37-42}$ with the current model's PE curve(s). We do not include a figure illutrating these comparisons, due to the implicit arbitrary nature of such a comparison. In our preliminary communication, we depicted (incorrectly) the mirror image of the literature curve, further complicating this comparison.
(67) Seeman, J. I. Chem. Rev. 1983, 83, 83.
involve severe interactions between the trityl cation and the cyclopentadienyl ligand.

For complexes with two C_{α} substituents, all conformations that would make the sole α-hydrogen accessible to trityl cation are energetically extremely unfavorable. It is not surprising therefore that in complete contrast to the ethyl complex 30 , which undergoes exclusive α-hydride abstraction, the isopropyl complex 32 undergoes β-hydride abstraction to give the propene complex $33 .^{31}$

The C_{α}-methoxy complexes 34 and 35 behave similarly. On treatment with trityl cation, 34 loses hydride, ${ }^{68}$ as an α-hydrogen is sterically available, whereas 35 loses methoxide, ${ }^{69}$ since the α-hydrogen is not available to trityl abstraction.

For the more highly substituted complexes ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) Fe $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CHR}^{\prime} \mathrm{R}^{\prime \prime}$, the literature model ${ }^{37-42}$ predicts that conformations in which the larger of the $\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$ substituents (arbitrarily chosen to be R^{\prime}) lies anti to the cyclopentadienyl moiety (e.g., 36 and 37) while the current model, based on the

36

$\stackrel{38}{88}$

37

$\stackrel{39}{\sim}$
conformational analyses of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{R}^{\prime}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CHR}_{2}{ }^{\prime}$, predicts conformations 38 and 39 and related conformations in which neither R^{\prime} nor $\mathrm{R}^{\prime \prime}$ dips much below the plane defined by CO, Fe, and C_{α}.

V. Concluding Remarks

A conformational analysis model has been presented in this study for organotransition-metal complexes of the general types $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}(1)$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{R}$ (2) ($\mathrm{R}=$ alkyl and aryl). The model is based on detailed extended Hückel calculations, the most stable conformations from which correlate well with known X-ray crystal structures. Furthermore

[^3]the conformational analysis model developed herein can explain the stereochemical outcome of the stereospecific reactions observed for complexes 1 and 2.
The extended Hückel calculations accurately mirrored the known structural characteristics of a wide set of different complexes $\mathbf{1}$ and $\mathbf{2}$ where $\mathrm{R}=$ benzyl, phenyl, trimethylstannyl, and 1,2-diphenylethyl. This success not only supports the conformational analysis model presented herein but validates the use of the extended Hückel algorithm for predicting structural characteristics of organotransition-metal complexes, especially those in which steric factors are dominating.

This initial analysis has been restricted to complexes 1 and 2 where $\mathrm{R}=$ alkyl or aryl. However, we are presently expanding this conformational analysis model to other classes of complexes generalized by 1 and 2 (e.g., $R=$ acyl, carbene, etc.).

It is clear from the results and discussions above that conformational analysis of these highly substituted organotransitionmetal complexes is in its formative stages. The models presented herein were designed to provide the initial basis for understanding and evaluating the stereochemical intricacies of these compounds. However, before we can be definitive about such topics as potential energy barriers for rotations, geometries, and detailed structural features of sterically hindered complexes or of higher energy but stable conformations, additional experimental and theoretical results must become available. In combination with X-ray crystallographic analyses, very detailed theoretical calculations including complete geometry optimization will be an asset in these studies.

It is clear from the recent work of many laboratories including those of Brunner, ${ }^{14,15,19}$ Brookhart, ${ }^{19,20}$ Flood, ${ }^{16-18}$ Gladysz, ${ }^{26-33}$ Liebeskind, ${ }^{13}$ Reger, ${ }^{23-25}$ and ourselves ${ }^{6-12}$ that these types of complexes will make increasing contributions to asymmetric organic synthesis. Unified experimental, structural, and theoretical studies will undoubtedly accelerate the success in this relatively new but already promising field. ${ }^{70-72}$

Acknowledgment. We thank Dr. D. M. P. Mingos and R, Johnston for invaluable theoretical and practical discussions regarding the extended Hückel calculations and for making their programs available to us. We acknowledge with thanks Prof. M. C. Baird and John Gladysz for sharing unpublished data prior to publication and for helpful discussions following their reading of this manuscript. We acknowledge the Oxford University Computing Service for their cooperation and assistance during the course of this work and thank Anne Donathan for secretarial assistance. One of us (J.I.S.) thanks Philip Morris for providing the sabbatical leave and Prof. Jack E. Baldwin for making available the hospitality at Oxford.

Appendix

The calculations were of the extended Hückel type, with "weighted" $H_{i j}$'s. The parameters used are listed in Table III and were taken from the recent literature. ${ }^{32,58-62}$ Additional calculations using other parameters, both with "weighted" and "unweighted" $H_{i j}$'s, were also performed: the results were qualitatively very similar.

The structures, for which calculations were performed, were input by using the standard internal coordinate system. Two different formulations were used. In the first, the initial atom
(70) Hunter and Baird ${ }^{71}$ have recently reported a ${ }^{1} \mathrm{H}$ NMR NOE difference study of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ (40). One result is particularly impressive. Irradiation of the cyclopentadienyl proton resonance results in a positive enhancement of one of the α-hydrogen atom resonances and a negative enhancement of the other α-hydrogen atom resonance. Based on this study, Hunter and Baird ${ }^{71}$ and Cameron and Baird ${ }^{72}$ concluded that the preferred conformation of 40 to 25 B , where the $\mathrm{Si}\left(\mathrm{CH}_{3}\right)$ group lies within the Cp -(CO) bite angle (c.f. Chart I, bottom line) as opposed to the previously published Baird model ${ }^{37-42}$ in which the $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ group would have been within the $\left(\mathrm{PPh}_{3}\right)-(\mathrm{CO})$ bite angle (c.f. Chart I, op line, structure A). Thus, Prof. Baird's latest experiment results and conclusions support and indicate the effectiveness of our new conformational model.
(71) Hunter, B. K.; Baird, M. C. unpublished results. We thank Prof. Baird for making these results available to us prior to publication.
(72) Cameron, A. D.; Baird, M. C. J. Chem. Soc., Dalton Trans., in press.
was the transition metal, and a typical "piano-stool" arrangement was constructed around this atom. In the second, the initial atom was the phosphorus of the PPhH_{2} ligand, the second atom was the transition metal, and the octahedral character of the complex was constructed by specifying the bond angles each ligand made with the phosphorus atom. That the two input approaches were identical was checked by comparison of the external coordinates of a complex whose structure was input in both modes. For calculations on $\mathbf{7 , 8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 2}, \mathbf{1 3}$, and 14, the symmetrical "piano-stool" arrangement was used with structural parameters either from related X-ray determinations or by assuming a pseudooctahedral complex of bond angles of 90°. For 11 and 15, the second input mode was utilized and again the structural parameters were obtained from X-ray determinations. When experimental structural data was lacking, standard bond lengths (c.f.: Hine, J. "Structural Effects on Equilibria in Organic Chemistry"; Wiley, New York, 1975; Tables 2-3 and 2-4) and bond angles $\left(109.5^{\circ}\right.$ for tetrahedral, 120° for the phenyl ring bond
angles) were used. All calculations were performed on the Oxford University Computer Service's ICL 2988 computer running under VME.
Registry No. 1 ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{O}$-menthyl), 53584-63-7; 1 ($\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{CO}_{2}$-methyl), 42936-43-6; $(R R, S S)-1(\mathrm{R}=\mathrm{COCH}(\mathrm{Me}) \mathrm{Et})$, 87173-05-5; 1 ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$), 12123-80-7; 1 ($\mathrm{R}=\mathrm{COPh}$), 12118-59-1; (SS)-1 $\left(\mathrm{R}=\mathrm{COCH}_{3}\right), 54516-77-7 ;(S R)-1(\mathrm{R}=\mathrm{I}), 97996-35-5 ; 1(\mathrm{R}$ $\left.=\mathrm{SO}_{2}-i-\mathrm{Pr}\right)$, 97950-27-1; $1\left(\mathrm{R}=\mathrm{CO}_{2}\right.$-menthyl), 32005-37-1; $1(\mathrm{R}=$ $\left.\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right), 32965-99-4 ; 1\left(\mathrm{R}=(\mathrm{Z})-\mathrm{C}(\mathrm{OMe})=\mathrm{CHCH}_{3}\right), 91594-50-2 ; 1(\mathrm{R}$ $=\mathrm{Me})$, 32824-72-9; $1\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$, 32761-84-5; $1\left(\mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}\right)$, 59161-00-1; 1 ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$), 33135-99-8; 1 ($\mathrm{R}=\mathrm{SO}_{2} \mathrm{O}-1$-methyl), 59349-67-6; $1(\mathrm{R}=i-\mathrm{Pr}), 97919-57-8 ; 1(\mathrm{R}=t-\mathrm{Bu}), 97919-58-9 ; 2(\mathrm{R}$ $\left.=\mathrm{CH}_{2} \mathrm{Ph}\right)$, 71763-28-5; $2\left(\mathrm{R}=\eta^{2}-\mathrm{CH}_{2}=\mathrm{O}\right), 84369-15-3 ; 2\left(\mathrm{R}=\eta^{2}-\right.$ $\left.\mathrm{CH}_{2}=\mathrm{S}\right)$, 84369-17-5; $2\left(\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}\right), 82374-41-2 ; 2(\mathrm{R}=$ $=\mathrm{CHPh}), 97995-45-4 ; 2(\mathrm{R}=\mathrm{CHO}), 70083-74-8 ; 2\left(\mathrm{R}=\mathrm{CH}_{2}-2,4,6\right.$ $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 89727-27-5; 2 ($\mathrm{R}=\mathrm{CH}_{2}-t$ - Bu), 85926-74-5; 7, 97919-48-7; 8, 97919-49-8; 9, 97919-50-1; 10, 97919-51-2; 11, 97919-52-3; 12, 97919-53-4; 13, 97919-54-5; 14, 97919-55-6; 15, 97919-56-7; 18, 82399-56-2; 19, 85956-36-1; 20, 32613-20-0.

Stereoselective Oxidative Addition of Silanes and Hydrogen Halides to the Iridium(I) Cis Phosphine Complexes $\operatorname{Ir} \mathbf{X}(\mathrm{CO})($ dppe $)(X=\mathrm{Br}, \mathrm{CN}$; dppe $=$ 1,2-Bis(diphenylphosphino)ethane)

Curtis E. Johnson and Richard Eisenberg*
Contribution from the Department of Chemistry, University of Rochester, Rochester, New York 14627. Received April 1, 1985

Abstract

The oxidative addition of silanes, $\mathrm{R}_{n} \mathrm{Cl}_{3-n} \mathrm{SiH}(n=3, \mathrm{R}=\mathrm{Et}, \mathrm{Ph}, \mathrm{OEt} ; n=2, \mathrm{R}=\mathrm{Me} ; n=1, \mathrm{R}=\mathrm{Me}$), to the $\operatorname{Ir}(\mathrm{I})$ cis phosphine complexes $\operatorname{IrX}(\mathrm{CO})(\mathrm{dppe})(\mathrm{X}=\mathrm{Br}, \mathrm{CN} ; \mathrm{dppe}=1,2$-bis(diphenylphosphino)ethane) has been found to proceed stereoselectively under kinetic control. Of the four possible diastereomers that can form by concerted cis addition of the $\mathrm{Si}-\mathrm{H}$ bond to the iridium(I) center, the one having hydride trans to CO and Si trans to $\mathrm{P}(\mathrm{dppe})$ is formed initially with $>98 \%$ stereoselectivity. For $\mathrm{X}=\mathrm{Br}$, this diastereomer is not the thermodynamically favored product. Isomerization of the initially formed silyl hydride product to the equilibrium mixture of diastereomers follows first-order kinetics for the triphenylsilyl derivative with $k_{1}=0.015 \mathrm{~min}^{-1}$. The rate of isomerization for the kinetic silyl hydride adducts decreases in the order $\mathrm{Et}_{3} \mathrm{SiH}$ $>\mathrm{Ph}_{3} \mathrm{SiH}>(\mathrm{OEt})_{3} \mathrm{SiH}>\mathrm{Me}_{2} \mathrm{ClSiH}$ with the $\mathrm{MeCl}_{2} \mathrm{SiH}$ derivative not isomerizing even after prolonged heating. The most stable diastereomer for $\mathrm{X}=\mathrm{Br}$ has hydride trans to Br and silyl trans to $\mathrm{P}(\mathrm{dppe})$. For $\mathrm{X}=\mathrm{CN}$, the kinetic isomer with H trans to CO and Si trans to $\mathrm{P}(\mathrm{dppe})$ is also the most stable isomer, although other isomers are observed to form after initial reaction. Secondary chemistry of the triethylsilyl hydride products for $\mathrm{X}=\mathrm{Br}$ and CN is observed over longer reaction times leading to the formation of $\operatorname{IrHX}(\mathrm{CO})(\mathrm{dppe})(\mathrm{X}=\mathrm{Br}), \mathrm{IrH}_{2}\left(\mathrm{SiEt}_{3}\right)(\mathrm{CO})\left(\mathrm{dppe}^{2}\right)$, and $\mathrm{Et}_{3} \mathrm{SiSiEt}_{3}$. This secondary chemistry is consistent with reductive elimination/oxidative addition sequences. The oxidative addition of HX to $\mathrm{IrX}^{\prime}(\mathrm{CO})(\mathrm{dppe})$ also proceeds stereoselectively, giving the isomer with H trans to X^{\prime} and X trans to P (dppe). This diastereomer results from cis addition in which $\mathrm{H}-\mathrm{X}$ approaches the square-planar $\mathrm{Ir}(\mathrm{I})$ complex with its axis parallel to $\mathrm{X}^{\prime}-\mathrm{Ir}-\mathrm{P}$. Thus, while $\mathrm{R}_{3} \mathrm{SiH}$ and HX both add to $\operatorname{IrX}(\mathrm{CO})$ (dppe) by a cis concerted mechanism, the diastereoselection for HX is opposite to that for $\mathrm{R}_{3} \mathrm{SiH}$. It is proposed that this difference arises because the silane approach to the $\operatorname{Ir}(\mathrm{I})$ complex is nucleophilic while that of HX is electrophilic.

In previous reports we have described the kinetic stereoselectivity of H_{2} oxidative addition to $\mathrm{IrX}(\mathrm{CO})(\mathrm{dppe})$ complexes, (dppe $=$ 1,2-bis(diphenylphosphino)ethane), which are cis-phosphine analogues of Vaska's complex, trans- $\left.\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right)^{1,2}$ This oxidative addition can proceed along two possible pathways, i and ii, as shown in eq 1 , leading to different diastereomers for the concerted cis addition of H_{2}. Pathway i corresponds to H_{2} approach to the square-planar complex with the molecular axis of H_{2} parallel to $\mathrm{P}-\mathrm{Ir}-\mathrm{CO}$ as shown in A . The concerted oxidative

[^4]
addition along itakes place with a bending of the trans $\mathrm{P}-\mathrm{Ir}-\mathrm{CO}$ axis so that one hydride of the product becomes trans to CO and

[^0]: ${ }^{+}$Permanent address: Philip Morris Research Center, P.O. Box 26583, Richmond, VA 23261.

[^1]: (1) Davies, S. G. "Organotransition Metal Chemistry: Application to Organic Synthesis"; Pergamon Press: Oxford, 1982.
 (2) Collman, J. P.; Hegedus, L. S. "Principles and Applications of Organotransition Metal Chemistry"; University Science Books: Mill Valley, CA, 1980.

[^2]: (56) For recent applications of the extended Hückel method to organo-transition-metal complexes closely related to 1 and 2 , see ref 32 and 57-62.
 (57) Hofmann, P. Angew. Chem., Int. Ed. Engl. 1977, I6, 536.
 (58) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585.
 (59) Berke, H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 7224.
 (60) Goddard, R. J.; Hoffmann, R.; Jemmis, E. D. J. Am. Chem. Soc. 1980, 102, 7667.
 (61) Ortiz, J. V.; Havlas. Z.; Hoffmann, R. Helv. Chim. Acta 1984, 67, 1.
 (62) Kubáček, P.; Hoffmann, R.; Havlas, Z. Organometallics 1982, I, 180.

[^3]: (68) Cutler, A. R. J. Am. Chem. Soc. 1979, 101, 604.
 (69) Brookhart, M.; Nelson, G. O. J. Am. Chem. Soc. 1977, 99, 6099. For the analogous reaction with $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CHMeOMe}$, see: Bodnar, T.: Cutler, A. R. J. Organomet. Chem. 1981, 2/3, C31-C36.

[^4]: (1) Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 3148-3160.
 (2) Johnson, C. E.; Fisher, B. J.; Eisenberg, R. J. Am. Chem. Soc. 1983, 105, 7772-7774.

